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Comment on “1/f noise in the Bak-Sneppen model”
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Contrary to the recently published results by Daerden and VandergBhgls. Rev. 53, 4723(1996], we
show that the time correlation function in the random-neighbor version of the Bak-Sneppen model can be well
approximated by an exponential giving rise to &Igower spectrum.
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Recently, an exact solution of the random-neighbor ver- 1
sion of the Bak-Sneppen model was presented by de Boer G(7) = exp- al7|, 3
and co-workerg1]. They derived a master equation for the
probability P,(t) that n of out of N numbers have a value . . .
less than a fixed valua at (discrete time t. In the limit ~Wherea=1. This directly gives the power spectral density
N—o and A=1/2, P, has the scaling formP,(t) S(®) via a Fourier transform o6(7)
=(1N) f(x=n/yN, 7=t/N). Inserting this expression

into the master equation gives the following Fokker-Planck - 1 a
equation forf(x,7) with a reflecting boundary at=0: S(w)=5 2 (4)
2
or_tot + i(xf) (1) ~ Going back to the unscaled variables leads to
or 4 &XZ IX ’
) ] 1 a

Consequently, the random-neighbor version of the Bak- Sp(w)=§2—, (5)
Sneppen model fal— o« is just an Ornstein-Uhlenbeck pro- a_+w2
cess, i.e., Brownian motion in a parabolic potential. Given N2

the initial conditionf(x,0)= 8(x—Yy), the solution is
which is only valid for low frequencies. Hence, the power
2 —2(x—yexp )? spectral density of the signa(t) decays as 1f and for very
f(x,7)= 1—exp 27 exp 1—exp 2r (20 low frequencies it even becomes constant. However, the
( xp xp above calculation was carried out without applying the

] ) ) boundary condition at=0. Nevertheless, it is already clear
It follows for the autocorrelation functio®(7) of the time  from a physical point of view that the functional form of

signalx(7) G(7) will not change drastically by incorporating a reflecting
boundary. This is supported mathematically by the fact that
10° . r one simply has to use the method of images. This was done
in Ref.[2] giving
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FIG. 1. Plot of the correlation function given by E®). 1 L
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FIG. 2. Plot of the power spectrum given by a numerical Fourier
*Email address: davidsen@theo-physik.uni-kiel.de transformation of Eq.6). The solid line with exponent-2 is
"Email address: luethje@theo-physik.uni-kiel.de drawn for reference.
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the Fourier transfornS(w) is real.
In the case of the Bak-Sneppen model with one next
neighbor, we also cannot confirm the results presented in

G(7)= %[1— exp 271¥%F[1,2,3/2t _(7)]

+F[1,2,3/2; . (7)]—F[1,2,5/12r -(7)]/3 Ref. [2]. A direct simulation of the time signal gives
1 Sp(w)x1/w'® over 2 decades for a system size MNf

—F[1,2,5/2¢ . (7)]/3}— 5= (6) =8192. Hence, although the power spectral density in the
a

Bak-Sneppen model decays as a power law, the exponent is
far from one. This is also true for a different definition of the
time signal[3].

In conclusion, there is no sign of fLhoise in the random-

whereF(a,b,c,z) is the hypergeometric function and where
ro(r)=3[1+exp(=7]. In Fig. 1, G(r) is shown. We
fé?fgli!mg 1aon ?\)/(iaonreiggi:) baehi\xgrr gli‘;g?gigioofs in neighbor version of the Bak-Sneppen model, and even in the

LS 7= 1V giving P sP . y next-neighbor version there isnoflroise in the strict sense.
Eq. (4). This is confirmed by a numerical Fourier transform

of Eq. (6) (see Fig. 2 Here, it has to be noted th&t(7) is J. Davidsen would like to thank the Land Schleswig-
an even function, i.eG(7)=G(— 7). This also ensures that Holstein, Germany, for the financial support granted to him.
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