Comment on ''1Õ*f* **noise in the Bak-Sneppen model''**

Jörn Davidsen* and Norbert Lüthje[†]

Institut fu¨r Theoretische Physik und Astrophysik, Christian-Albrechts-Universita¨t, Olshausenstraße 40, 24118 Kiel, Germany

(Received 18 August 2000; published 24 May 2001)

Contrary to the recently published results by Daerden and Vanderzande [Phys. Rev. E 53, 4723 (1996)], we show that the time correlation function in the random-neighbor version of the Bak-Sneppen model can be well approximated by an exponential giving rise to a $1/f²$ power spectrum.

DOI: 10.1103/PhysRevE.63.063101 PACS number(s): 05.40. - a, 64.60.Ak, 87.10. + e

Recently, an exact solution of the random-neighbor version of the Bak-Sneppen model was presented by de Boer and co-workers [1]. They derived a master equation for the probability $P_n(t)$ that *n* of out of *N* numbers have a value less than a fixed value λ at (discrete) time *t*. In the limit $N \rightarrow \infty$ and $\lambda = 1/2$, P_n has the scaling form $P_n(t)$ $f(x) = (1/\sqrt{N}) f(x) = n/\sqrt{N}, \tau = t/N$. Inserting this expression into the master equation gives the following Fokker-Planck equation for $f(x, \tau)$ with a reflecting boundary at $x=0$:

$$
\frac{\partial f}{\partial \tau} = \frac{1}{4} \frac{\partial^2 f}{\partial x^2} + \frac{\partial}{\partial x} (xf).
$$
 (1)

Consequently, the random-neighbor version of the Bak-Sneppen model for $N \rightarrow \infty$ is just an Ornstein-Uhlenbeck process, i.e., Brownian motion in a parabolic potential. Given the initial condition $f(x,0) = \delta(x-y)$, the solution is

$$
f(x,\tau) = \sqrt{\frac{2}{\pi (1 - \exp^{-2\tau})}} \exp{\frac{-2(x - y \exp^{-\tau})^2}{1 - \exp^{-2\tau}}}. (2)
$$

It follows for the autocorrelation function $G(\tau)$ of the time signal $x(\tau)$

FIG. 1. Plot of the correlation function given by Eq. (6) .

$$
G(\tau) = \frac{1}{4} \exp(-a|\tau|),\tag{3}
$$

where $a=1$. This directly gives the power spectral density $S(\tilde{\omega})$ via a Fourier transform of $G(\tau)$

$$
S(\tilde{\omega}) = \frac{1}{2} \frac{a}{a^2 + \tilde{\omega}^2}.
$$
 (4)

Going back to the unscaled variables leads to

$$
S_P(\omega) = \frac{1}{2} \frac{a}{\frac{a^2}{N^2} + \omega^2},\tag{5}
$$

which is only valid for low frequencies. Hence, the power spectral density of the signal $n(t)$ decays as $1/f²$ and for very low frequencies it even becomes constant. However, the above calculation was carried out without applying the boundary condition at $x=0$. Nevertheless, it is already clear from a physical point of view that the functional form of $G(\tau)$ will not change drastically by incorporating a reflecting boundary. This is supported mathematically by the fact that one simply has to use the method of images. This was done in Ref. $[2]$ giving

FIG. 2. Plot of the power spectrum given by a numerical Fourier transformation of Eq. (6) . The solid line with exponent -2 is drawn for reference.

^{*}Email address: davidsen@theo-physik.uni-kiel.de † Email address: luethje@theo-physik.uni-kiel.de

$$
G(\tau) = \frac{1}{8\pi} \left[1 - \exp^{-2\tau} \right]^{3/2} \{ F[1,2,3/2,r_-(\tau)] + F[1,2,3/2,r_+(\tau)] - F[1,2,5/2,r_-(\tau)]/3 - F[1,2,5/2,r_+(\tau)]/3 \} - \frac{1}{2\pi},
$$
 (6)

where $F(a,b,c,z)$ is the hypergeometric function and where $r_{\pm}(\tau) = \frac{1}{2} [1 \pm \exp(-\tau)].$ In Fig. 1, *G*(τ) is shown. We clearly find an exponential behavior with $a=0.869\pm0.008$ for $0.1<\tau<10$ giving rise to a power spectral density as in Eq. (4). This is confirmed by a numerical Fourier transform of Eq. (6) (see Fig. 2). Here, it has to be noted that $G(\tau)$ is an even function, i.e., $G(\tau) = G(-\tau)$. This also ensures that the Fourier transform $S(\tilde{\omega})$ is real.

In the case of the Bak-Sneppen model with one next neighbor, we also cannot confirm the results presented in Ref. $[2]$. A direct simulation of the time signal gives $S_p(\omega) \propto 1/\omega^{1.5}$ over 2 decades for a system size of *N* $=8192$. Hence, although the power spectral density in the Bak-Sneppen model decays as a power law, the exponent is far from one. This is also true for a different definition of the time signal $[3]$.

In conclusion, there is no sign of $1/f$ noise in the randomneighbor version of the Bak-Sneppen model, and even in the next-neighbor version there isno $1/f$ noise in the strict sense.

J. Davidsen would like to thank the Land Schleswig-Holstein, Germany, for the financial support granted to him.

- [1] J. de Boer *et al.*, Phys. Rev. Lett. **73**, 906 (1994).
- [2] F. Daerden and C. Vanderzande, Phys. Rev. E 53, 4723 $(1996).$
- @3# M. Parzuski, S. Maslov, and P. Bak, Phys. Rev. E **53**, 4273 (1996); S. Maslov *et al.*, *ibid.* **58**, 7141 (1998).